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Elementary statistical mechanics of a relativistic gas 
in thermal equilibrium I1 
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j: Department of Medical Statistics, Welsh National School of Medicine, Cardiff, UK 

Received 13 April 1976, in final form 8 December 1976 

Abstract. Elementary methods of relativistic statistical mechanics developed in a previous 
paper are applied to the particular case of a relativistic gas with constant particle number. 
They are compared with an earlier approach and are shown to be inequivalent and superior 
to it. A third approach, based on a radical re-appraisal of the principles underlying the 
earlier one, is introduced. The two new schemes are examined, and the difficulties inherent 
in each are considered. 

1. Introduction 

In a previous paper a formulation of the special relativistic statistical mechanics of a 
large but finite, ergodic system of particles in a box was given (Kraus and Landsberg 
1974, to be referred to as A). Particle creation and annihilation were allowed, and 
the particles were of course able to collide. Macroscopic quantities were obtained in 
a general inertial frame I in terms of the momenta pi,  and energies eir of individual 
particles r = 1, 2 . , , Ni in a general state i of the system by summation over particles 
and time averaging over states, using the ‘time-based’ probabilities qi of finding the 
system in a state i. Such macroscopic quantities were, e.g., the average energy ( E )  and 
the average momentum (P) of the gas and its pressure p .  The Lorentz transformation 
properties of the macroscopic averages were then shown to follow correctly from 
relativistic particle kinematics. 

The simplifying feature of this work was the assumption that a ‘state indicator’, 
attached to the wall of the box, enables any observer to read off immediately the state of 
the system. In this way we avoided complicated Lorentz transformation properties of 
the ‘state of the system’ which would result if an observer moving relative to the box 
would characterize a state by the momenta and energies of individual particles as 
measured simultaneously in his own rest frame. Instead only the effect of the observer’s 
motion on the time intervals during which he sees the different state indicator readings 
had to be taken into account. Just as one can argue that in thermodynamics the rest 
frame of a system plays a preferred r81e (Landsberg 1970), so one can argue that this 
also holds in statistical mechanics. The most reasonable way whereby a moving 
observer can determine the state of a system is to have appropriate measuring devices 
and dials attached to the system, and then to utilize their readings, 
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For other recent discussions of relativistic thermodynamics see, e.g., Habeger 1972, 
Grdn 1973, Szamosi 1973. We have not established a connection as yet between the 
present work and relativistic kinetic theory (e.g., Anderson and Witting 1974, and 
references cited therein) although such a connection should exist. 

In this paper we shall first discuss a particular case of model treated in A, namely, a 
gas with constant particle number (Ni = N, independent of i ) .  We shall then compare 
the approach of A with an older attempt to formulate an elementary version of 
relativistic statistical mechanics (Landsberg and Johns 1970a, to be referred to as B). 
The notation of A will be retained. Note in particular that a subscript or superscript 0, 
attached to a symbol for a quantity measured in a general inertial frame I, means that it 
is measured in the rest frame Io of the box. The probability that the system is in state i 
will be denoted by qi, a Lorentz invariant quantity (qi = qp) by equation (2.3) of A. The 
total lifetime of a state i during a period of observation T is denoted by ri so that 
(cf equation (2.2) of A) 

1 qj = 1. Ti qi = lim -, 
T + a  7 i 

The velocity of the box in I is denoted by w. Strictly speaking, w should be interpreted 
as the centre of mass velocity of the total system (box plus particles), since it is the latter 
which is constant in I whereas the box velocity undergoes some small fluctuations (cf. § 4 
of A). Since, however, the centre of mass remains inside the box for all times, w is also 
the average box velocity in all inertial frames I. 

Finally, we shall introduce a new approach to statistical mechanics by considering 
not the states in which a system exists for limited periods of time, but rather the events at 
which it changes from one state to another. We shall show equivalence between this 
new procedure and the more usual one, and demonstrate its particular suitability for use 
under the Lorentz transformation. It will thus be apparent that both the theory of A, 
based on particle states, and an augmented version of the theory of B, based on states of 
the whole system, are valid in appropriate conditions. A comparison is made between 
both theories, and the conceptual difficulties brought about by each are discussed. 

2. The model without particle creation or destruction 

In this special case a given particle will be denoted by the same label r in all states i of the 
system. The distance d, travelled by particle r during a time interval T = Z j  T~ (with T~ 
equal to the lifetime of state i) in a frame I may differ from the distance WT travelled by 
the box of some vector 1, whose length, however, cannot exceed the diameter of the box 
in I: 

In the explicit expressions for d, on the right-hand side, the 'kinematical weight factors' 
(equation (3.11) of A) have been taken into account. Dividing by T and passing to 
the limit T + CO yields (cf (2.2) of A): 

( r  = 1 , 2  . . . N ) .  (2.1) 
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In particular, the time averaged velocity of any particle vanishes in Io: 

(U: ) ,  = qiu:= 0 ( r =  1 , 2 . .  . N ) .  
i 

(Note that (2.2) and (3.15) of A together yield an alternative derivation of (2.1).) 
It is an immediate consequence of (2.2) that if one rewrites equation (3.12) of A as 

then the rir are normalized in the sense 

c Tir = 1 ( r  = 1 , 2 .  . . N ) ,  rir = N .  
i ir 

(2.3) 

(2.4) 

The rir are the time-based probabilities that a given particle r contributes to state i ,  thus 
having energy-momentum {pir,  E J c } ,  in frame I. (The total probability that particle r 
has given values { p ,  E / C }  of energy-momentum in I is thus the sum of the rir over all 
states i with pir = p and eir = E . )  Thus it is formally possible to use averaging procedures 
which utilize the rir. In passing from the rest frame Io to a general frame I they 
transform according to 

0 
r i r  - w .  U l r  -_ 0 1+- r: = qi. 
r i r  c 2  ’ 

If one introduces an average particle velocity in state i ,  

and a particle-averaged probability 

1 
r i  = - rir, 

N r  (2.7) 

then by summing over r in (2.5) one finds an equation from which the particle label r has 
been eliminated altogether: 

These new probabilities are also normalized, 

c.ni=l, (2.9) 
i 

as follows from (2.4) and (2.7). Also X i  qiup = 0 by (2.2) and (2.6), and this leads again to 
(2.9) from (2.8). In our theory the rir can be used for averaging in all frames, but the ri 
can be used for averaging in frame Io only where there are just the qi (equations (2.4) 
and (2.5) of A). 

3. Comparison with previous work 

The preceding section enables us to make a comparison with the previous paper B 
mentioned in the introduction. We shall deal first with the similarities between A and 
B. 
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In B it was assumed that the state i of the system could be determined from any 
inertial frame I (but it was not explained how this might be done), and probabilities .ir;. 
for the system to be in states i = 1 , 2  . . . were defined in terms of the ratio of two t e r m  as 
in equation (2.2) of A. This immediately led to a Lorentz transformation formula of the 
form (2.8) for the 7ri; but whereas (2.8) contains the average particle velocity up in Io, 
the corresponding velocity in B was interpreted as the centre of mass velocity of the gas 
in Io. As we shall see later on, the method used in B to discuss states of the system 
without taking into account in detail the individual particles constituting these states 
does not reproduce the results of the approach described in A, and therefore must be 
rejected. Nonetheless both approaches may be derived in an analogous way from a 
common source, as follows. 

Suppose on treats the 7ri as unknown probabilities that in frame I the gas is in state i, 
characterized by a total momentum Pi and a total energy Ei of the gas. Then we require 

and try to find the quantities f I  in the assumed form 

771 = (1 +fl)d (3.2) 

of the transformation law which connects the 7rl in I with the corresponding prob- 
abilities 7r: in the rest frame Io (in which (Po>0 = 0). The quantities {Pl, EJc}  on the 
left-hand sides of (3.1) are four-vectors (they refer to periods in which all gas particles 
move freely, as explained in A and B). The quantities (P) and ( E )  on the right-hand 
sides, however, form the four-vector {(P), ( (E)  + p V ) / c }  which contains, in addition, 
the box volume V in I and the pressure p .  Therefore the T, in (3.1) must change in 
some way under Lorentz transformations, i.e., fI  # 0 in (3.2). Relating 7rI to 7r: by (3.2) 
and {Pl, E J c }  to {Pp, EPIC} via Lorentz transformation, the circumstance that the 
transformation laws for (P) and ( E )  are known yields the following equations for f i  
(Landsberg and Johns 1970b): 

7rfhEQ = 0, 
I 

Since (PO), = 0, (3.3) is satisfied by 
0 w .  p p - w .  ui f. =--- - 

E? c 2  . 

Then (3.4) and (3.5) yield the relation used in B for the pressure p :  

(3.3) 

(3.5) 

p P n  = r f ( n  uppy, (3.6) 

where n is an arbitrary unit vector. With (3.5) we have obtained a transformation of the 
7ri of the form (2.8) in which up, however, means the centre of mass velocity c2Pp/Ep of 
the gas in Io. This essentially leads to the results of the earlier attempt B. 

What was not known then is that a completely analogous approach can be set up 
which involves sums over particles. Consider 7ri, as unknown probabilities that a given 

1 
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particle r appears as a constituent of state i. thus having energy-momentum {p ir ,  eir/c}, 
in frame I. Instead of (3.1) and (3.2) we then require 

and 

r i r  = (1 +hr)r!, (3.8) 

where r: = rp (independent of r )  since, by definition, the gas is in a given state in Io if 
and only if each particle r has an energy-momentum {PE, E : / c }  characteristic for that 
state. (The r f  have to be identified with the qp = qi used in A.) The two equations for 
the unknown f i r  corresponding to (3.3) and (3.4) now turn out to be 

W 2 rniqfirPE=TpVOa C 
ir 

Equation (3.9) is satisfied by 
0 0 w .  pir w .  U i r  

0 -- f. =-- 
C2 

ir 
E ir 

(3.9) 

(3.10) 

(3.11) 

which leads at once to our theory A, with a pressure p given (from (3.10) and (3.11)) by 

(3.12) 

Thus the constraint that both {Pi, Ei /c}  and {(P), ( ( E ) + p V ) / c }  shall be four-vectors is 
satisfied by the theories of A and B, and is thus not sufficient to single out one of them. 

We shall finally prove that the theories of A and B are in fact inequivalent. It 
suffices to show that equations (3.6) and (3.12) yield different values of the pressure p 
for one and the same system. We use the formulae: 

and 

(3.13) 

(3.14) 

which are equivalent to (3.6) and (3.12), respectively (cf, for example, (2.1 1) and (2.12) 
of A). Their inequivalence is easily shown as follows. Let u1 . . . uN be arbitrary vectors 
and c1 . . . cN arbitrary positive numbers with Cr cr = 1. Then 

(3.15) 

and equality holds in (3.15) if and only if U ,  = u2 = . . . = uN. This follows immediately 
from Cauchy’s inequality 
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(for which equality holds if and only if p r  = aa,, r = 1 . . . N) by taking a, = Jc,, 
p, = ark Jc, (with ark = k-th component of a,) and adding the resulting inequalities for 
k = 1,2,  and 3. Applying (3.15) with U, = u;/c’ = P ; / E ;  and c, =E;/EP leads to 

for all i .  Thus (3.13) always yields a pressure p which is smaller than or at most equal to 
the pressure calculated from (3.14). Moreover, the pressures are equal if and only if the 
particle velocities U; are independent of r for all states i, a case which is without any 
practical interest. The attempt in B to obtain the momentum transport across a surface 
as a fraction of the total momentum Pp, transported through the surface by the centre of 
mass motion of the gas, thus underestimates the pressure. This is, after all, not 
unexpected, since the momenta p ;  of individual particles, which all give a positive 
contribution in (3.14), compensate each other to a large extent in the total momentum 
Pf which enters (3.13). 

From the foregoing and the observation that in both theories {(P), ((E) + p V ) / c }  is a 
four-vector whereas (Po)o and (Eo>o coincide when calculated with the methods of 
either A or B also follows that the method B underestimates (P) in all frames I except 
the rest frame Io. 

4. A new approach to the analysis of states of the system 

The preceding section demonstrates the unsatisfactory nature of the present analysis of 
the system under consideration from a macroscopic point of view. In order to retain the 
compatibility between analyses based on particle states and those based on states of the 
whole system, it is proposed that a radically new approach be adopted towards the 
latter. Whereas it has until now been usual todeal with a system in terms of the length of 
time it spends in each of many different states, it is now intended instead to concentrate 
attention upon the events which mark the transition from one state to another. These 
events will be characterized by incremental changes in the energy, momentum etc of the 
system, and will be assumed to be localized in space and time, as if caused, for example, 
by an instantaneous particle collision. The usefulness of this approach in dealing with 
Lorentz transformations between inertial frames of reference will be demonstrated in 
the following sections. Firstly, it is necessary to show the equivalence of the new 
technique and the old one. 

Working in an inertial frame of reference, I, let us define a numbered set of events 
denoted by j ,  where -co < j  < +coo. Let us denote the time and place of event j by ti and 
xi. We shall consider those events occurring between times to and t, inclusive, where 
n >> 1. 

Define 

7 = t” - t o  (4.1) 
and 

“j  = (tj+l - t j ) / 7 .  (4.2) 

Consider an extensive quantity Q having value Qj between events j and j + 1. Then the 
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main value of Q over time T is given by 

(0) = nzl VjQj 
j = O  

=’(nil ]=o tj+lQj-nzl j = O  tjQj) 

=-( 1 2 ty2j-l-11tjQj) 
7 ]=1 j = O  

959 

(4.3) 

(4.4) 

where AQj =Qj-Qj- l ,  i.e. the increase in Q for the whole system at event j .  This 
depends only of event j itself and not on any other event. In any other inertial frame of 
reference it may be obtained by the Lorentz transformation of an increment of quantity 
Q at a point in space-time, regardless of other changes at other points. 

Equation (4.4), a summation over events, is thus equivalent to (4.3), a summation 
over states, though two extra terms (involving the values of Q at the start and end of the 
time period under consideration) are included. One of these may be reduced to zero by 
a suitable choice of time scale (e.g. by defining to = 0). While (4.4) appears to be of no 
great significance within the frame of reference in which the quantities are defined, its 
importance lies in the simplicity which it exhibits under the Lorentz transformation. It 
is of course evident that to obtain a similar expression in another frame, it is necessary to 
sum over a different set of events, since some of those events which lie within the 
specified time interval ( 7 )  are observed from one frame will not do so when observed 
from another frame. Nevertheless, it is our intention to show that the sums over two 
such sets of events are equivalent, and hence that equation (4.4) may be transformed 
simply by applying the Lorentz transformation to the terms involving time and the 
quantity Q while still summing over the same events. 

5. Validity of sums over the same set of events in different inertial frames 

Consider a second inertial frame of reference I’ (quantities denoted by primed symbols), 
in which the original frame I moves with velocity w. Define the following sets of events: 

H occurring before event U in both frames I and I’ 
J occurring before event 0 in I and after event 0 in I’ 
K occurring after event 0 in I and before event 0 in I’ 
L occurring before event n in I and after event n in I’ 
M occurring after event n in I and before event n in I‘ 
N occurring after event 0 and before event n in both frames. 

It is to be assumed that the system was created at some time in the past (before event 
0), and that all of quantity 0 which it has acquired since then is a result of such events as 
we are considering here. It is further assumed, since T is taken to be large, that there are 
no events occurring before event 0 in one frame and after event n in the other. Then, 
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from (4.4), using the symbol E to denote membership of a set of events, we have: 

Let us denote by (Q)’ the quantity obtained by summing over the same sets of events, 
using the variables as they are transformed from frame I to 1’. Thus: 

(5 .2 )  

However, an observer in I’ will not obtain expression (4.2) for the mean value of Q’. He 
will sum over a different combination of sets of events to obtain: 

From (5.2) and (5.3) the difference between these two quantities is given by: 

Examination of equation (5.4) reveals that all sums over the set N, of events which lie 
between 0 and n in both frames, have vanished. By taking the time r ’  to be very much 
greater in magnitude than the maximum spatial dimension of the system divided by c 
(the velocity of light), we find that the number of events in sets J, K, L and M becomes 
negligibly small compared with N. Furthermore, the time intervals (tk - t;), for M and 
L, and ( t j  - tb), for J and K, are also negligibly small compared with r ’ ,  since events in M 
and L occur around event n, and events in J and K occur around event 0. Equation 
(5.4) is thus a sum of a much smaller number of much smaller quantities as compared 
with equations (5.2) and (5.3). We may thus safely equate the transformed time average 
with the average of the transformed quantities in accordance with our intentions as 
expressed at the end of P 4: 

(Q>’= (U). (5 .5 )  

It is now possible, using quantities defined in frame I f ,  to revert to the use of a sum 
over states instead of a sum over events. Since, however, the order in which the terms of 
a summation are taken is irrelevant, we may take the events in the order in which they 
occur in frame I (not 1’) and thereby ensure that each state considered in I’ begins and 
ends with the same pair of events as a corresponding state observed in I. One obvious 
consequence is that the order of such a pair may be reversed on transformation from I to 
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1’, and that the state it defines in I‘ thus may be deemed to exist for a negative period of 
time. This we call a hypothetical state. It can readily be shown that despite the logical 
absurdity of treating such entities as if they actually existed, statistical summations over 
these hypothetical states produces perfectly valid results. 

Thus from equations (5.5) and (5.2) we have 

(a’) = ;( 1 (f; - f;) AQj + 1 (t; - t;) AQ; 
7 jcK,L,N j e H J  

Equation (5.6) is identical to equation (4.4) except that the symbols are primed (i.e. 
the quantities involved are measured in inertial frame 1’). By retracing the derivation of 
(4.4) we obtain: 

(5.7) 

Note that T; may be negative, since although 9 ti, the same relationship does not 
necessarily hold under Lorentz transformation. Note also that even if event j does 
precede event j +  1 in frame 1’, the system need not remain in the same state between 
those events since other events may occur between them. Thus for this reason also, the 
state in which the system is considered to exist between typical events j and j + 1 may be 
called hypothetical (except, of course, in frame I in which the ordering of events was 
originally determined). Even so, the derivation of equation (5.7) holds good, and the 
summation over hypothetical states for the general extensive quantity 0’ remains valid. 

6. The occurrence under Lorenb transformation of terms involving rates of flow 

It will now be shown that in the formulation of a transformed quantity in a new frame of 
reference, terms arise which fall into two distinct categories. The first of these depend 
on times measured in the earlier frame (from which the transformation is being made) 
and lead to expressions involving untransformed quantities measured in that frame. 
The others, due to the Lorentz transformation of time, depend on distances measured 
in the earlier frame and lead to expressions involving rates of flow of untransformed 
quantities measured in that frame. 

In this section we will recommence using quantities measured in frame Io in which 
the system is, on average, at rest. These will be denoted by a superscript zero. Thus 

(PO) = 0 (6.1) 

where P denotes momentum. 
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Transformations will be to frame I, with a velocity in Io again denoted by w. We 
define 

( 1-- ;:)-1'2. 
Thus, for the Lorentz transformation of time, we have 

Hence, from (4.1): 

By our earlier assumptions about the magnitude of the time interval r in relation to the 
size of the system (which cannot be less than (x:-x;)), the second term above is 
negligibly small, and we may thus put 

(6.3) = y(rjl- t8) = TO. 

Now, for quantity Q in the general inertial frame I, we have from (4.4), (6.2) and (6.3): 

Each of the above terms AQ], and Qo is respectively derived from AQ?, Q:-l and 
Qt, together with their four-vector components, by the same linear transformation (i.e. 
the Lorentz transformation from frame Io to I). The first of the two major terms in 
equation (6.4) clearly resolves itself into the same linear function of (Qo) and its 
components. If the second major term were zero, this would indicate that the 
time-averaged value for Q transformed in exactly the same way as the values of Q for 
each state of the system, and as the increments of Q which occur at changes of state. 
However, it is not always the case that the second major term is zero. In fact, as shown 
in the appendix, the expression 

n-1 -z X ~ A Q ;  
j=1 

(6.4~) 

represents the flow of quantity Qo through the system during time ro. Hence the 
expression 

j=1 

which occurs at the start of the second major term of equation (6.4), represents the same 
linear function as mentioned above applied to the flow of Qo and its four-vector 
components through the system in time r. 

Absorbing the divisor 7' into the term under consideration produces further 
simplification. Firstly the flow of Qo and its components is replaced by an expression for 
their rates of flow. Secondly, the last two expressions in the term, x:Qn-, -x:Qo, are 
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reduced to insignificant magnitude due to our earlier assumptions about the large size of 
T O  compared with the dimensions of the system, and due also to the fact that the system 
is in a steady state and hence the rate of increase of 0, equal to ( Q : - l - Q Z ) / ~ o ,  
approximates to zero. 

If we now take Q to be either Lorentz invariant, or a four-vector or some higher 
order tensor obeying the Lorentz transformation, we may write: 

Qj = $(QY)  and AQj =+(A@) 

where $ is the linear function, dependent on w, which accomplishes the Lorentz 
transformation from Io to I. It follows at once from the above arguments that the 
time-averaged quantity (Q) is transformed as follows: 

where the three-vector (8") denotes the time-averaged rate of flow of quantity Qo 
through the system as measured in frame Io. It is the presence of the second term in 
equation (6.5) which shows the validity of the statements made in the first paragraph of 
this section. This equation may be rewritten in tensorial notation for convenience in 
handling higher order quantities. Thus: 

where p ,  v = 1 + 4, k = 1 + 3; v.. . represents a tensor of indefinite order. 

7. Application of the above theories in the case of energy and momentum 

The ideas embodied in equation (6.5) can now be applied to specific instances. Let us 
therefore consider the energy and momentum of a system confined inside a closed 
vessel, with pressure p and volume v0 (as measured in the inertial frame Io). Firstly, 
note that the rate of flow of energy through the stationary system is zero; this of course 
follows at once from the fact that no work is being done at any part of the system's 
surface, as well as from its having zero momentum. However, momentum does flow 
through the system due to the forces constraining it within the closed vessel. Familiar 
arguments lead to the result that for any chosen direction, momentum in that direction 
flows through the system in that same direction with magnitude p v .  Note that if 
momentum directed in one way flowed in a different direction, this would indicate the 
presence of lateral stresses within the system; while not physically impossible, this 
would not apply in the types of system being considered here (e.g. a gas in equilibrium). 
The 3 X 4 tensor for the rate of flow of energy-momentum (p), through the system is 
theref ore : 

IPV, 0, 0, o \  
(7.1) 

In the case of energy-momentum, the 4 X 4 tensor $: which transforms from Io to I 
takes the following well known form (it is here assumed that we have chosen Cartesian 
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coordinates such that w is parallel to the first spatial coordinate): 

Y, 0, 0, YW/C2 

Y W ,  0, 0, Y I 
We also have for energy-momentum (v"), and velocity w 

and 

(7.3) 

(7.4) 

Replacing 0 by U and substituting (7.1)-(7.4) in (6.6) gives: 

Therefore 

since the momentum is zero in Io. 
Equation (7.5) incorporates the well known expressions for the Lorentz transforma- 

tion of the energy and momentum of a confined system from the inertial frame in which 
it is at rest to another inertial frame. 

8. Discussion 

In the preceding sections we have seen contrasted two different approaches to the 
statistical problems presented by a compressed gas in the special theory of relativity. 
The first of these (0 2 and 0 3) is based on earlier theories, and by the use of the concept 
of a 'state indicator' attached to the system, enables the difficulties found in previous 
work to be overcome. The second (00 4-7) adopts a radically new approach and enables 
similar results to be obtained without explicit consideration of particle states, and 
without recourse to the artificial 'state indicator'. The equally artificial 'hypothetical 
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states’ of the system are shown to be mathematically valid, yielding no unexpected 
anomalies in the cases considered, even though they do not correspond to the actual 
system states. Both theories can of course be extended to cover Lorentz transforma- 
tions between any two inertial frames, since the transformation between and a 
general frame is known. 

The second of them can particularly easily provide transformation formulae for 
other quantities than those considered here, by means of equations (6.5) and (6.6). 
These can be rendered into a covariant form by dividing throughout by the volume of 
the system (Von the left, = yv). It 
can then be seen that the first term on the right-hand side is the product of the fourth 
(time-like) components of two four-vectors (or a vector and a higher order tensor), and 
the second term is the product of the three space-like components of the same entities. 
In the case of energy-momentum, this will bring us back to the transformation of the 
energy density/momentum density/pressure tensor, commonly called TwY. It should 
not be thought, however, that the calculations in §§ 4-7 above apply only to systems of 
compressed gas. They can equally, for example, be used to consider the flow of particles 
through an open ended tube. The mean number of particles in the tube in any frame I 
can be calculated from the mean number and rate of flow in Io by use of equation (6.5), 
and the validity of the result can easily be checked from well known results concerning 
the transformation of volume and particle density. This is of course a trivial result, but it 
serves to show the generality of the theory. 
An important part of this theory is that it involves states of the whole system, and not 

of any particles which may comprise it. The fact that the events at which the system 
changes state may well be particle collisions does not affect this point. While the 
criticisms of earlier works in §§ 2 and 3 are valid as far as the methods used in those 
works are concerned, we do not suggest that the approach used in those works (based on 
states of the system) is in itself incorrect. Rather we suggest that both approaches are 
inherentiy acceptable, though we realize that there are drawbacks in the application of 
each. In the one case (004-7) there are ‘hypothetical states’ existing for negative 
periods of time; in the other (00 2-5 of I, §§ 2 and 3 of this paper) there is the ‘state 
indicator’ which, being based on the use of a preferred frame of reference, is a 
manifestly non-covariant concept. The ‘kinematic weight factors’ used in this latter 
scheme bear a strong resemblance to the Lorentz-transformed expressions for the time 
spent in the ‘hypothetical states’ of the former. While, however, the mathematical 
backing for the use of ‘hypothetical states’ is readily available (being derived from 
consideration of the events at which the system changes shape), the ‘kinematic weight 
factors’ depend for their existence on the use of the non-covariant ‘state indicator’. 
Which theory is to be used in any given situation thus requires careful consideration. 

on the right, producing an extra factor 7, since 

Appcaclix. Discussion of equation ( 6 k )  

Tbe problem of quantifying the flow of the general extensive quantity Qo through a 
system should be approached by considering first of all what we mean by the flow of such 
a quantity. Let us observe that Qo can be localized in the sense that we can say that a 
certain particle, or body or region of space contains a certain measure of this ~nantity 
(say QZ) at some instant in time, while another particle etc may contain another 
measure (say Qg) at the same or a different instant. It is then not unreasonable to say 
(indeed it may even be taken as a definition) that the flow of Qo is the sum over all 
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particles, bodies etc of the product of the measure of Qo attached to a particle a and the 
distance moved by that particle while it remains in the system, i.e. 

P T Landsberg and K A Johns 

flow of Qo = Ar: . AQB. 
a 

Dividing such an expression by the increment of time in which the various motions take 
place gives a rate of flow of Qo equal to the sum of the products of particle velocities and 
corresponding measures of Qo. This readily yields familiar expressions for various rates 
of flow (e.g. momentum, the rate of flow of mass, is given by the sum of the products of 
particle velocities and particle masses). 

The difficulty arises in the present case because there are no particles or bodies 
envisaged in our latest model of a system. Let us therefore rearrange equation (A. 1) so 
as to eliminate the explicit reference to particles etc, a, and replace it by reference to 
events in space and time. Thus let us assign to each particle a a location x: where it is to 
be found at the start of the period of time in which it is in the system; clearly at the end of 
this period each particle will be at xE+ Ax:. Equation (A. 1) then becomes 

Observe that the first of the two sums above corresponds to events where particles cease 
to be considered as contributing to the flow (i.e. events at the ends of the time intervals); 
on the other hand, the second sum corresponds to events where a particle begins to 
contribute (i.e. events at the beginnings of the time intervals). Together they form a 
sum over all events where positive or negative increments of Qo are added to the 
system. Let us again rearrange the expressions, this time as sums over the sets of events 
{J+}  (positive increments of Qo, where particles enter the system), and {J-} (negative 
increments of Qo, where particles leave the system). For events j in {J+} ,  the 
increments AQ; are clearly equal to the corresponding increments AQZ, whereas for 
events in {J-} they are equal to -AQE. Similarly the locations xo of events in { J + }  
correspond to each XZ while those in {J-} correspond to each (xu+Ax:).  b Equation 
(A.2) immediately becomes 

=-  C X~AQ; .  
j c { J - u J + )  

It can therefore be seen that so long as the set of events over which the sum is taken 
consists of events where particles start and finish contributing their increments AQg to 
the system, equation (A.3) is as valid as our original definition of the flow of Qo, as 
expressed in equation (A.1). Furthermore, though our model of the system does not 
deal with particles explicitly we certainly do not claim that particles do not exist or that 
an extensive quantity Qo is not quantizable into discrete increments. Thus the only 
consideration which could invalidate the use of equation (A.3) in our statistical model 
would be an overall increase or decrease of Qo over the long periods of time TO which we 
consider, indicating that there was an imbalance of positive and negative increments 
of Qo. This, however, would contradict our basic assumption concerning the system 
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being in a ready state, and therefore we can assert that within the limitations of our 
model, the rate of flow of a general extensive quantity Qo is given by 

where the sum is taken over all events where an increment of Qo, AQ; (positive or 
negative), is added to the system. 
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